Selective Synthesis of 7-Substituted Purines via 7,8-Dihydropurines

Vladislav Kotek, Naděžda Chudíková, Tomáš Tobrman, and Dalimil Dvořák^{*}

Department of Organic Chemistry, Institute of Chemical Technology, Prague, Technicka´ 5, 166 28 Prague 6, Czech Republic

*dalimil.d*V*orak@*V*scht.cz*

Received October 21, 2010

ABSTRACT

A simple and efficient protocol for the preparation of 7-substituted purines is described. 6- and 2,6-Dihalopurines were *N***⁹ -tritylated and then transformed to 7,8-dihydropurines by DIBAL-H. Subsequent** *N***⁷ -alkylation followed by** *N***⁹ -trityl deprotection with trifluoroacetic acid was accompanied by spontaneous reoxidation, which led to the 7-substituted purines at 55**-**88% overall isolated yields.**

The 2- and/or 6-,9-substituted purines form a vast group of biologically active compounds.¹ Moreover, some naturally occurring 7-substituted purines also exhibit interesting biological properties. Caffeine represents probably the best known *N*⁷ -substituted purine derivative. Other examples are Raphanatin and 6-(benzylamino)-7-(β -D-glucopyranosyl)purine, which possess cytokinin activity² or 2-amino-7- $[(1,3$ dihydroxy-2-propoxy)methyl]purine, that exhibit high antiviral activity.3 Also asmarine alkaloids with their significant cytotoxicity against various tumor cell lines can be considered as 7-substituted purines.⁴ The other group of N^7 substituted purines is represented by the 7,9-disubstituted purine motif, which can be found in many biologically relevant compounds, including the mRNA cap analogs.⁵ While the biological activity of 7-substituted purines has clearly been demonstrated, the synthetic approaches to them are rather limited in scope.

ORGANIC LETTERS

2010 Vol. 12, No. 24 ⁵⁷²⁴-**⁵⁷²⁷**

7-Substituted purines can be prepared by labored cyclization of appropriate diaminopyrimidine derivatives⁶ or by direct alkylation of purine bases. It however, usually leads to mixtures of both N^7 and N^9 -alkyl derivatives in which the latter predominates.⁷ Only a few 2- or 6-aminopurine derivatives have been reported to undergo *N*⁷ -alkylation preferentially. Thus N^3 -benzyladenine can be selectively alkylated at the N^7 -position and subsequent debenzylation affords N^7 -substituted adenine.⁸ Glycosidation of trisilylated N^2 -acetylguanine⁹ and alkylation of disilylated 2-acetamido-6-chloropurine5 was also reported to produce 7-substituted

⁽¹⁾ For a recent review of naturally occurring 7 - and 9-substituted purines see: Rosemever, H. Chem. Biodiversity **2004**, 361.

⁽²⁾ Duke, C. C.; Liepa, A. J.; MacLeod, J. K.; Letham, D. S.; Parker, C. W. *J. Chem. Soc., Chem. Commun.* **1975**, 964, and references cited therein.

⁽³⁾ Jähne, G.; Kroha, H.; Müller, A.; Helsberg, M.; Winkler, I.; Gross, G.; Scholl, T. *Angew. Chem., Int. Ed.* **1994**, *33*, 562.

^{(4) (}a) Yosief, T.; Rudi, A.; Stein, Z.; Goldberg, I.; Gravalos, G. M. D.; Schleyer, M.; Kashman, Y. *Tetrahedron Lett.* **1998**, *39*, 3323. (b) Rudi, A.; Shalom, H.; Schleyer, M.; Benayahu, Y.; Kashman, Y. *J. Nat. Prod.* **2004**, *67*, 106. (c) Rudi, A.; Aknin, M.; Gaydou, E.; Kashman, Y. *J. Nat. Prod.* **2004**, *67*, 1932. (d) Yosief, T.; Rudi, A.; Kashman, Y. *J. Nat. Prod.* **2000**, *63*, 299.

^{(5) (}a) Recent examples: Jemielity, J.; Kowalska, J.; Rydzik, A. M.; Darzynkiewicz, E. *New. J. Chem.* **2010**, *34*, 829. (b) Cai, A.; Jankowska-Anyszka, M.; Centers, A.; Chebicka, L.; Stepinski, J.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R. E. *Biochemistry* **1999**, *38*, 8538.

⁽⁶⁾ Montgomery, J. A.; Hewson, K. *J. Org. Chem.* **1961**, *26*, 4469. (7) (a) Montgomery, J. A.; Temple, C. *J. Am. Chem. Soc.* **1961**, *83*, 630. (b) Lukin, K. A.; Yang, C.; Bellettini, J. R.; Narayanan, B. A. *Nucleosides Nucleotides Nucleic Acids* **2000**, *19*, 815.

purine derivatives selectively. Another example is N^6 -[(dimethylamino)methylen]adenine, which is alkylated exclusively at the N^7 -position.¹⁰ We have recently shown that this compound as well as N^2 -[(dimethylamino)methylen]guanine can also be arylated with high N^7 -selectivity.¹¹

On the other hand, the selective N^7 -alkylation of 2- or 2,6halopurines is a troublesome procedure, because direct alkylation leads to predominance by the N^9 -isomer.¹² Issues related to regioselectivity have been addressed by *N*⁷ alkylation of 6-chloro-9*H*-purine and 2,6-dichloro-9*H*-purines in the presence of sophisticated Co-complexes.¹³ In addition, reversible Michael addition of 6-chloro-9*H*-purine to acrylonitrile provided a temporary N⁹-protecting group for the *N*7 -alkylation of 6-chloro-9*H*-purine during the total synthesis of asmarines.¹⁴ Despite some progress in the area of N^7 alkylation of halopurines, studies of biological activity are limited by the availability of such compounds from a simple, efficient and convenient protocol.

Therefore we envisioned that selective *N*⁷ -alkylation of 7,8-dihydropurines followed by *N*⁹ -deprotection and reoxidation may be used as a simple route for the synthesis of *N*7 -substituted purine derivatives (Scheme 1).

To our surprise only a few reports have been published dealing with the preparation of 7,8-dihydropurine derivatives. The reported protocols for the preparation of these compounds are limited mainly to the action of boron-derived reducing reagents, for example, $NabH_4$,¹⁵ NaBH₄/HCl,¹⁶ $N_{AB}H_3CN/ACOH$,¹⁷ BH_3 ^THF,¹⁸ and $N_{AB}H_4/ACOH$,¹⁹ The reduction of adenine derivatives with DIRAL-H was also reduction of adenine derivatives with DIBAL-H was also

(12) For examples, see: (a) Toyota, A.; Katagiri, N.; Kaneko, C. *Chem. Pharm. Bull.* **1992**, *40*, 1039. (b) Česnek, M.; Holý, A.; Masojídková, M. *Tetrahedron* **2002**, *58*, 2985. (c) Landli, G.; Gundersen, L.-L.; Rise, F. *Tetrahedron* **1996**, *52*, 5625. (d) Brik, A.; Wu, C.-Y.; Best, M. D.; Wong, C.-H. *Bioorg. Med. Chem.* **2005**, *13*, 4622.

- (13) Dalby, C.; Bleasdale, C.; Clegg, W.; Elsegood, M. R. J.; Golding, B. T.; Griffin, R. J. *Angew. Chem., Int. Ed.* **1993**, *32*, 1696.
- (14) Pappo, D.; Shimony, S.; Kashman, Y. *J. Org. Chem.* **2005**, *70*, 199.
	- (15) Kelley, J. L.; Linn, J. A. *J. Org. Chem.* **1986**, *51*, 5435.
	- (16) Pendergast, W.; Hall, W. R. *J. Heterocyclic Chem.* **1989**, *26*, 1863. (17) Sako, M.; Saito, T.; Kameyama, K.; Hirota, H.; Maki, Y. *J. Chem.*
- *Soc., Chem. Commun.* **1987**, 1298.
- (18) Trafelet, H.; Stulz, E.; Leumann, C. *Hel*V*. Chim. Acta* **²⁰⁰¹**, *⁸⁴*, 87.

(19) Maki, Y.; Suzuki, M.; Ozeki, K. *Tetrahedron Lett.* **1976**, *17*, 1199.

mentioned.¹⁸ Therefore, we initially tested the ability of the imidazoyl moiety of purine to undergo reduction under various conditions. The results are summarized in Table 1.

Table 1. Reduction of 9-Substituted 6-Halo and 2,6-Dihalopurines under Various Conditions

	conditions R	R	NHCH $_{\rm 3}$ NHR 3	
entry	X, Y, R	reagent ^a	yield $(\%)^b$	
1	Cl, H, $C_6H_5CH_2(1a)$	NaBH ₄ ^c	2a $(73)^d$ 1a $(27)^d$	
$\overline{2}$	Cl, H, $C_6H_5CH_2(1a)$	LiAlH ₄	2a(77)	
3	Cl, H, $C_6H_5CH_2(1a)$	LiBEt ₃ H	2a(79)	
$\overline{4}$	Cl, H, $C_6H_5CH_2(1a)$	LiAlH ₄ ^e	3a(67)	
5	Cl, H, $C_6H_5CH_2(1a)$	DIBAL-H	2a(97)	
6	I, H, $C_6H_5CH_2(1b)$	DIBAL-H	2b(89)	
7	Cl, H, $(C_6H_5)_3C(1c)$	DIBAL-H	2c(94)	
8	Cl, I, $C_6H_5CH_2$ (1d)	DIBAL-H	2d(97)	
9	MeO, H, $C_6H_5CH_2(1e)$	DIBAL-H	2e(65)	
10	Ph, H, $C_6H_5CH_2(1f)$	DIBAL-H	2f(65)	
11	NEt_2 , H, $C_6H_5CH_2(1g)$	DIBAL-H		
α Reaction conditions: Reducing reagent (1.2 equiv) was added to a				

solution of purines **1a**-**^g** and the reaction mixture was stirred for 2 h at room temperature. *^b* Isolated yield. *^c* Reaction mixture was refluxed for 2 days. ^{*d*} ¹H NMR yield. ^{*e*} Reaction mixture was stirred for 4 h at 60 °C.

Attempts to use the Pd-catalyzed triethylsilane reduction²⁰ of 9-benzyl-6-chloro-9*H*-purine (**1a**) in various solvents (DMF, THF, dioxane) at an elevated temperature led to the full recovery of the starting compound. Repetition of the reported NaBH4 reduction of **1a** gave **2a** at 73% ¹ H NMR yield along with the unreacted chloropurine **1a** (Table 1, Entry 1). Complete consumption of **1a** was achieved with LiAlH4 and LiBEt3H; however, the isolated yields of **2a** did not change significantly (Table 1, Entries 2,3).

Interestingly, lithium aluminum hydride reduction carried out at 60 °C furnished pyrimidine derivative **3a** (Table 1, Entry 4). In contrast, DIBAL-H selectively and efficiently reduced 6-halopurines **1a**,**b**,**c** and 2,6-dihalopurine **1d** to the corresponding 7,8-dihydropurines **2a**-**^d** almost quantitatively (Table 1, Entries $5-8$). The outcome of the reduction was considerably influenced by the nature of the substituent in position 6. While purines bearing 6-MeO (**1e**) and 6-Ph (**1f**) groups were reduced at somewhat lower yield, the $6-\text{NEt}_2(1g)$ derivative failed to give any dihydropurine derivative (Table 1, Entries $9-11$). The character of the substituent also influenced the stability of the obtained dihydropurine. Thus, halogen-bearing dihydropurines **2a**, **2b**, and **2d** showed excellent stability in air and no traces of reoxidized product **1** were observed after several months of storage in air in the

^{(8) (}a) Leonard, N. J.; Fujii, T.; Saito, T. *Chem. Pharm. Bull.* **1986**, *34*, 2037. (b) Fujii, T.; Saito, T.; Inoue, I.; Kumazawa, Y.; Leonard, N. J. *Chem. Pharm. Bull.* **1986**, *34*, 1821–1825.

⁽⁹⁾ Garner, P.; Ramakanth, S. *J. Org. Chem.* **1988**, *53*, 1294.

⁽¹⁰⁾ Hocková, D.; Buděšínský, M.; Marek, R.; Marek, J.; Holý, A. *E. J. Org. Chem.* **1999**, 2675.

⁽¹¹⁾ Keder, R.; Dvorˇáková, H.; Dvorˇák, D. *Eur. J. Org. Chem.* **2009**, 1522.

⁽²⁰⁾ For recent examples of Pd-catalyzed triethylsilane reduction, see: (a) Luo, F.; Pan, C.; Wang, W.; Ye, Z.; Cheng, J. *Tetrahedron* **2010**, *66*, 1399. (b) Mandal, P. K.; McMurray, J. S. *J. Org. Chem.* **2007**, *72*, 6599. (c) Nakanishi, J.; Tatamidani, H.; Fukumoto, Y.; Chatani, N. *Synlett* **2006**, 869.

solid state at room temperature. In contrast, dihydropurines containing electron-donating substituents **2e**,**f** and also the 9-trityl derivative **2c** were easily oxidized to **1e**,**f** and **1c** upon exposure to air within a couple of weeks. For their instability, the compounds **2e** and **2f** were not included in the further study.

Next, we focused on the alkylation of the obtained dihydropurines **2**. For optimization of the alkylation conditions, the reaction of **2a** and **2b** with iodomethane was carried out. The first experiments confirmed the previously reported low stability of 7,8-dihydropurines in the presence of a base.¹⁵ Thus, attempts to alkylate **2a** in the presence of sodium hydride in THF afforded a 3:1 mixture of the desired 7-methylated purine **4a** and 9-benzyl-9*H*-purine (**5**) as the product of dehydrohalogenation at low yield (Table 2, Entry

^{a 1}H NMR yield. ^{*b*} Reaction without CH₃I. Reaction conditions: dry DMF was added to a mixture of **2a** or **2b** (1.0 equiv) and NaH (1.2 equiv). The resultant mixture without addition of CH3I was stirred for 1 h at room temperature. *^c* Isolated yield. *^d* Unreacted starting **2a** was recovered.

1). The tendency of **2a** and **2b** to elimination was confirmed by the reaction with NaH without CH3I. 9-Benzyl-9*H*-purine (**5**) was isolated at 21 and 71% yield, respectively, in this case (Table 2, Entries 2,3). Other bases such as K_2CO_3 and DBU suppressed the dehydrohalogenation, but the yield of **⁴** did not exceed 51% (Table 2, Entries 4-7). Acceptable isolated yields of **4** were obtained when **2a** was alkylated in the presence of LiTMP or NaH in dry DMF; however, to avoid a side-reaction, DMF and iodomethane had to be mixed with a mixture of **2a** and the base simultaneously (Table 2, Entries 8,9). Since NaH is readily available and gives comparable results to lithium 2,2,6,6-tetramethylpiperidine, it was used for further alkylation experiments.

Since adenine itself and adenosine derivatives were not reduced by DIBAL-H, we focused on 6-halo and 2,6 dihalopurines as precursors of adenine and guanine derivatives. Under the above conditions 9-benzyl-6-chloro-7,8dihydropurine (**2a**), 6-chloro-7,8-dihydro-9-tritylpurine (**2c**) and 9-benzyl-6-chloro-7,8-dihydro-2-iodopurine (**2d**) reacted smoothly with highly reactive benzyl (Table 3, Entries $1-3$),

Table 3. Preparation of the 7,9-Disubstituted Dihydropurines **4**

$$
2 \frac{R^2X, Nat}{DMF} \times \frac{N}{2} \times \frac{N^2}{N} \times \frac{1. DBAL-H, THF}{2. R^2X, DMF}
$$

entry	Y, Z, R ¹	R^2X	yield $(\%)^{a,b}$
1	2a Cl, H, $C_6H_5CH_2$	$C_6H_5CH_2Cl$	4b (89)
$\overline{2}$	2a Cl, H, $C_6H_5CH_2$	4-CH ₃ OC ₆ H ₄ CH ₂ Cl	4c(84)
3	2a Cl, H, $C_6H_5CH_2$		4d (90)
4	2c Cl, H, $(C_6H_5)_{3}C$	$CH2=CHCH2Br$	4e (95)
5	2c Cl, H, $(C_6H_5)_3C$	$(CH_3)_2C=CHCH_2Br$	4f(80)
6	2d Cl, I, $C_6H_5CH_2$	$CH2=CHCH2Br$	4g(84)
7	2d Cl, I, $C_6H_5CH_2$	$(CH_3)_2C=CHCH_2Br$	4h (79)
8	2a Cl, H, $C_6H_5CH_2$	Br	4i(73)
9	2c Cl, H, $(C_6H_5)_3C$	$HC = CCH2Br$	4j(76)
10	2d Cl, I, $C_6H_5CH_2$	$HC = CCH2Br$	4k(82)
11	2a Cl, H, $(C_6H_5)_3C$	CH ₃ I	41 (87)
12	$2a$ Cl, H, $C_6H_5CH_2$	$C_6H_5OCH_2CH_2Br$	4m(99)
13	$2a$ Cl, H, $C_6H_5CH_2$	(CH ₃) ₂ CHI	4n(80)
14	$1a^c$ Cl, H, $C_6H_5CH_2$	$C_6H_5CH_2Cl$	4b(86)
15	1 e^c Cl, H, $(C_6H_5)_3C$	$CH2=CHCH2Br$	4e (57)
16	1 e^c Cl, H, $(C_6H_5)_3C$	$(CH_3)_2C=CHCH_2Br$	4f (70)
17	$1h^c$ I, H	$C_6H_5CH_2Cl$	40(60)
	$(C_6H_5)_3CO$		

^a Isolated yield. *^b* Reaction conditions: A solution of the alkylhalide (1.5 equiv) in dry DMF was added to a mixture of NaH (1.2 equiv) and 7,8-dihydropurine **2**. The resulting mixture was stirred for 2 h at room temperature. *^c* "One-pot" protocol was used: DIBAL-H (1.2 equiv) was added to a solution of **1** and the mixture was stirred for 2 h at room temperature, quenched by Na₂SO₄·10H₂O, filtrated through Celite and concentrated in vacuo. The crude product was mixed with NaH (1.2 equiv) followed by addition of a solution of RX (1.5 equiv) in dry DMF. The resulting mixture was stirred for 2 h at room temperature.

allyl (Table 3, Entries $4-8$) and propargyl halides (Table 3, Entries 9,10). High yields of 7-alkylated products were also obtained with unactivated primary and secondary alkyl halides (Table 3, Entries $11-13$). An attempt to simplify the above procedure by combining the reduction and alkylation steps was made. Thus, simple concentration of the reaction mixture after the reduction of **1a**, followed by the addition of NaH, dry DMF and benzyl chloride gave **4b** at 54% isolated yield. However, a different workup including quenching of the reaction mixture with $Na₂SO₄$ ^{+10H₂O after} reduction, filtration through Celite and concentration in vacuo followed by alkylation gave the desired **4b** at 86% yield (Table 3, Entry 14). Similarly, "one-pot" alkylation of **1c** with allyl bromide or 3,3-dimethylallyl bromide gave **4e** or **4f** at fairly good yields (Table 3, Entries 15,16). Moreover, the synthesis of N^7 -substituted-6-iodo-7,8-dihydropurine nucleoside **4o** was accomplished at 60% isolated yield using

this protocol starting from 6-iodo-9-(2,3-*O-*isopropylidene-5-*O*-trityl- β -D-ribofuranosyl)-9*H*-purine $(1h)^{21}$ (Table 3, Entry 17).

The selective synthesis of 7-substituted purines was subsequently accomplished. Selection of the appropriate protecting group for the protection of position 9 of the purine ring plays a crucial role. After several attempts, the trityl group was chosen because it can be introduced with high *N*9 -regioselectivity and deprotection proceeds easily under mild conditions. Thus, 6-chloro-9*H*-purine reacted with TrCl in the presence of triethylamine furnishing 9-trityl-6-chloro-9*H*-purine (**1c**) at 97% isolated yield. Subsequent reduction to **2c** (94%) followed by alkylation (Table 3, Entries 4,5,11) gave dihydropurines **4e**,**f**,**l** at 87, 73 and 79% overall yield (three steps). Subsequent deprotection by trifluoroacetic acid was accompanied by spontaneous oxidation²² affording the 7-alkyl-6-chloro-9*H*-purines **6e**, **6f**, and **6l** at 82, 70 and 79% overall yield respectively starting from 6-chloro-9*H*-purine (Table 4, Entries $1-3$).

In this case the overall number of separation steps can also be reduced. The starting halopurine was converted to 6-chloro-9-trityl-9*H*-purine (**1c**) or 2,6-dichloro-9-trityl-9*H*purine (**1i**) followed by alkylation according to the above "one-pot" procedure and the crude alkylated dihydropurines **4** were directly treated with trifluoroacetic acid giving the desired 7-substituted purines **6**. Thus, benzyl, propargyl, isopropyl and (methoxycarbonyl)methyl derivatives were cleanly and selectively obtained at overall yields ranging from 55 to 86% (Table 4, Entries $4-7$) using column chromatography only for the isolation of **1c** and the final 7-substituted purines **6**. Similar results were obtained for the *N*7 -alkylation of 2,6-dichloropurine by 2-iodopropane and 4-methoxybenzyl bromide (Table 4, Entries 8,9).

In summary, we have developed a new simple and selective protocol for the synthesis of 7-substituted purines. This methodology is based on the successive N^9 -protection, reduction, *N*⁷ -alkylation and *N*⁹ -deprotection accompanied by reoxidation of the starting purine derivative. It allows the

9 Cl 4-CH₃OC₆H₄CH₂ - **6r** (87)

^{*a*} Overall isolated yield starting from 6-chloro-9*H*-purine or 2,6-dichloro-9*H*-purine. ^{*b*} MnO₂ had to be used to oxidize the 6-chloro-7-propargyl-7,8dihydropurine **4j** to **6j** quantitatively. *^c* 2,6-Dichloro-9-trityl-9*H*-purine was obtained at 89% yield.

preparation of 6-halo and 2,6-dihalopurines bearing *prim.* or *sec.* alkyl, benzyl, allyl and propargyl groups in the position N^7 at 55-88% overall yield starting from the corresponding halopurine. Further studies to extend the scope of this methodology, screening of biological activity and study of the reactivity of novel 7,8-dihydropurines and 7-substituted purines are underway in our laboratory.

Acknowledgment. This project was supported by the Research Centre "The Structure and Synthetic Applications of Transition Metal Complexes-LC06070" of the Ministry of Education, Youth and Sports of the Czech Republic and by the Grant Agency of the Czech Republic (grant no. 203/ 09/1552).

Supporting Information Available: Experimental details and characterization data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL1025525

⁽²¹⁾ Hocek, M.; Holy´, A. *Collect. Czech. Chem. Commun.* **1999**, *64*, 229.

⁽²²⁾ The oxidation of dihydropurine derivatives **4** to the purines **6** was practically quantitative in all described cases. Only in the preparation of 7-propargyl derivative **6j** was a mixture of dihydropurines **4j** and **6j** obtained. The oxidation of the above mixture was easily achieved by stirring the CH_2Cl_2 solution with MnO_2 for 1 h (see Supporting information).